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Abstract—A unified similarity transformation is proposed to extract all possible similarity solutions for
free, forced and mixed convection within Darcy and non-Darcy porous media. The slip velocity at the wall
resulting from both the externally forced flow and the buoyancy force is chosen as a velocity scale to form
a modified Peclet number which naturally transforms into the conventional Peclet number and Rayleigh
number under certain physical limiting conditions. This unified treatment reveals three limiting flow
regimes, namely, the forced convection regime, the Darcy free convection regime and the Forchheimer free
convection regime, as well as three other intermediate flow regimes, namely, the Darcy mixed convection
regime, the Darcy-Forchheimer free convection regime and the Forchheimer mixed convection regime.
Relevant flow parameters for distinguishing these flow regimes are found to be the ‘micro-scale’ Reynolds
and Grashof numbers based on the square root of the permeability. A flow regime map has been constructed
to show these six different flow regimes, taking the two micro-scale dimensionless numbers as the abscissa
and ordinate variables, Asymptotic expressions derived for these flow regimes appear quite useful for

practical estimation of convective heat transfer within Darcy and non-Darcy porous media.

INTRODUCTION

MosT of the studies devoted to the field of convective
flow within porous media are based on the Darcy flow
model, in which the pressure gradient is assumed to
be in proportion to an apparent velocity, namely, the
Darcian velocity. The initial work on Darcian free
convection over a vertical flat surface was carried out
by Cheng and Minkowycz [1], while Nakayama and
Koyama [2] generalized the similarity transformation
proposed by Merkin [3], for Darcian free convection
over a non-isothermal body of arbitrary shape. Mixed
convection problems were also attacked by some
workers, using the Darcy flow model. Similarity solu-
tions have been found for the mixed convection flow
over isothermal bodies [4] and non-isothermal bodies
[5] placed in a fluid-saturated porous medium.

It is, however, well known that the Darcy flow
model breaks down, when the inertia resistance
(owing to wake and separation bubbles formed
behind a micro-structure) becomes comparable to the
viscous (Darcy) resistance. Forchheimer [6] proposed
a quadratic term in Darcian velocity to describe the
inertia effects. Bejan and Poulikakos [7] pointed out
that this non-Darcy flow model should be employed
for all high velocity flows in porous media with low
permeability, if we are to resolve the corflict, namely,
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that the Darcy flow model deteriorates as the bound-
ary layer approximation improves, and vice versa.
Plumb and Huenefeld [8] attacked non-Darcian free
convection over a vertical isothermal flat plate. Their
work was followed by Nakayama ez al. [9] to study
possible geometries and their corresponding wall tem-
perature distributions, which permit similarity solu-
tions. Non-Darcy free convection from a vertical plate
with mass transfer was treated by Kumari et al. [10],
while non-Darcy free convection over a slender ver-
tical frustum of a cone was investigated by Vasantha
et al. [11]. The studies of non-Darcy mixed convec-
tion, on the other hand, have been limited only for a
horizontal flat surface [12] and a vertical cylinder [13],
so far.

In this paper, we shall present a unified similarity
transformation procedure which yields classes of
possible similarity solutions for free, forced and mixed
convection of Darcian and non-Darcian fluids.
Almost all similarity solutions already reported in the
literature are readily reducible from the present set of
general differential equations. Another new class of
similarity solutions is also found in the Forchheimer
flow regime where the flow is so strong that the Darcy
resistance is negligible when compared with the inertia
resistance. This unified similarity treatment reveals
that there exist three limiting flow regimes, namely,



358 A. NaKAaYAMA and 1. Pop

equation (13)
q wall heat flux

¥ function representing wall geometry

r* 1 for plane flow and r for axisymmetric
flow

Ra, local Rayleigh number, defined in

equation (12b)

NOMENCLATURE
C empirical constant associated with Ra* modified Rayleigh number, defined in
porous inertia equation (15)
f dimensionless stream function Re*  micro-scale Reynolds number, defined in
g. tangential component of acceleration due equation (10a)
to gravity T temperature
Gr*  micro-scale Grashof number, defined in AT, wall-ambient temperature difference
equation (10b) u, v Darcian velocity components
Il function defined in equation (19) x,y boundary layer coordinates
k thermal conductivity z elevation measured from the lower
K permeability stagnation point.
m exponent associated with the free stream
velocity, u, oc x™
n exponent associated with the wall Greek symbols
temperature, defined in equation (25) o equivalent thermal diffusivity of the fluid-
Nu, local Nusselt number, defined in saturated porous medium
equation (27) B coefficient of thermal expansion
P pressure n similarity variable, defined in equation
Pe,  local Peclet number, defined in equation (18¢)
(12a) 0 dimensionless temperature
Pe¥  modified Peclet number, defined in /1.4 exponents introduced in equations (31),

(39), (48) and (65)
u viscosity of the fluid
v kinematic viscosity of the fluid
variables defined in equations (32), (40),
(49) and (66)
0 density of the fluid
v stream function.

the Forchheimer free convection regime, the Darcian
free convection regime and the forced convection
regime. Appropriate dimensionless groups for dis-
tinguishing these regimes are found to be the micro-
scale Reynolds and Grashof numbers based on the
length scale of the micro-structure, namely, the square
root of the permeability. A regime map showing these
asymptotic flow regimes and their boundaries cor-
responding to the Darcy mixed convection, the
Darcy-Forchheimer free convection and the Forch-
heimer mixed convection regime, has been con-
structed taking the micro-Reynolds number and the
micro-Grashof number as the ordinate and abscissa
variables.

GOVERNING EQUATIONS AND BOUNDARY
CONDITIONS

In Fig. 1, we shall consider a plane or axisymmetric
body of arbitrary shape, embedded in a fluid-satu-
rated porous medium. The geometry and wall tem-
perature of the heated body are specified by the func-
tions of the boundary layer coordinate x, namely, r(x)
and T,(x). The external velocity u.(x) for the given
geometry r(x) may readily be obtained from the
potential flow theory.

Under the boundary layer coordinates (x, y), the

governing equations, namely, the equation of con-
tinuity, the non-Darcy flow model (i.e. Ergun model
[14]) and the energy equation are given by

or*u  or*v

ax oy

0 M

H pC 2__d£ -
<t =~ i Pa-+pgBT—T,) (2)

JK"

and

FiG. 1. Physical model and its coordinates.
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or  oT 0T

gt = g 3
u6x+v(3y “ayz ®
where
1: plane flow
r* = . . G
r(x): axisymmetric flow
and

so=a|1-(5]]" ©

In the foregoing equations, ¥ and v are the Darcian
velocity components, while T'is the local temperature.
The Boussinesq approximation is evoked for the
buoyancy force. Furthermore, g, is the tangential
component of the acceleration due to gravity g; K the
permeability ; C an empirical constant associated with
the non-Darcy porous inertia term; p the fluid den-
sity; u the fluid viscosity; « the equivalent thermal
diffusivity of the fluid saturated porous medium ; f the
coefficient of thermal expansion. The corresponding
boundary conditions are

v=0,T=T.,x)
u=u(x),T="T,.

(6a,b)
(6¢,d)

Let us write equation (2) along the boundary layer
edge (y — o) utilizing the boundary conditions,
equations (6¢) and (6d)

_y:(};

y— o

dp . d K pC
~dy P9 = *a;(pﬂgz} =gt \TKue N

where z is the elevation measured from the front
stagnation point. The foregoing equation may be sub-
stituted into equation (2) to eliminate the pressure
term as

b o pC , n pC

TUt+ —— U = ——

K UK K JK
The foregoing quadratic equation may be solved for
u as

- 2 * T-T. ”2_
u 2C\/K[[(1+2Re) +4Gr (ATW 1

ul+pg p(T—T). (8)

®
where
Re*(x) = C\/Ku.fv {10a)
Gr*(x) = CK¥g BAT, |v* (10b)
and
AT, (x) = To—T.. (10c)

Hence, the slip velocity at the wall u,, is given by
v

= EC—'\/—IE

where Re* and Gr* are what we may call the ‘micro-

scale’ Reynolds and Grashof numbers, respectively,

[[(1 +2Re®)2+4Gr*] " —1] (11)

w

in which the reference length scale is chosen to be the
length scale of the micro-structure, namely, the square
root of the permeability of the porous medium.

MODIFIED PECLET NUMBER AND FLOW
REGIME MAP

Most previous studies on mixed convection cor-
relate the local Nusselt number in terms of either the
local Peclet number

(12a)

Pe, = ux/a

(for the forced flow dominated case), or the local
Rayleigh number

Ra, = Kg AT x/ov (12b)

(for the buoyancy force dominated case). However,
any mixed convection analysis which uses either Pe,
or Ra, inevitably suffers from a singularity under a
certain physical limiting condition. (For example, if
Pe, is used for scaling, a singularity will appear as
Ra,/Pe,— c0.) Moreover, the velocity field is estab-
lished as the result of both the external flow and the
buoyancy force. Naturally, it is the total velocity mag-
nitude over the heat transfer surface that virtually
determines convective heat transfer from the heated
surface. Thus, in our unified treatment, we shall
choose the slip velocity at the wall as a velocity scale,
and propose a new dimensionless number, namely,
the modified Peclet number
UyX

N [(1+2Re*)? +4Gr*] "2 — 1
=T
Pe? o Pe, 2Re*

(13)

to correlate the local Nusselt number. It can easily be
shown that Pe¥ transforms itself into

Pe* = Pe_for Re*+ Re*? » Gr*
(I': forced convection regime) (14a)
Pe¥ = Ra, for Re* « Gr*¥ « 1
(II: Darcian free convection regime) (14b)
Pe* = Ra*'? for Re*+ Re*? « Gr* and Gr* » 1
(III: Forchheimer free convection regime) (14c)

where

Ra} = /Kg AT x*/Ca? (13)

may be identified with the new dimensionless number
that Bejan and Poulikakos [7] found through a scale
argument.

The foregoing three flow regimes, namely, the
forced convection regime, the Darcy free convection
regime and the Forchheimer free convection regime,
are identified by I, II and II1, respectively, in Fig. 2.
Another three distinct regimes (connecting the fore-
going three regimes), namely, the Darcy mixed con-
vection regime (IV), the Darcy-Forchheimer free con-
vection regime (V) and the Forchheimer mixed
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FiG. 2. Flow regime map.

convection regime (VI), may be identified, in which
Pe* = Pe +Ra, for Gr* ~ Re* « 1
(IV: Darcy mixed convection regime) (16a)

(1+4Gr%) iz
2Gr*

for Gr* ~ land Re* « 1

Pe* = Ra,

(V : Darcy-Forchheimer free convection regime)
(16b)
Pe* = (Pe?+ Ra*)"? for Gr* ~ Re** » 1

(VI: Forchheimer mixed convection regime). (16¢c)

Thus, the modified Peclet number Pe¥ reduces to
appropriate dimensioniess numbers, corresponding to
the values of the micro-scale dimensionless numbers,
Re* and Gr*. We have introduced three macro-scale
dimensionless numbers and two micro-scale dimen-
sionless numbers. However, only three among these
five dimensionless numbers are independent, since we
have the following inter-relations between the macro-
and micro-dimensionless numbers :

Gr*/Re* = Ra,[Pe, (172)
and

Gr*/Re*? = Ra¥|Pe’. (17b)

UNIFIED TREATMENT FOR TRANSFORMING
EQUATIONS

Having established the modified Peclet number Pe},
we shall propose the following transformations:

Y = ar*(Pe¥ 1) '*f(x,n)
T—T, = AT, 0(x,n)

(18a)
(18b)

and
— Y * 12
n="_(Pex/l) (18c)
where
f ATu r** dx
0
I= AT (19
and ¥ is the stream function such that
1 o
U= ;‘; a‘;’ (20a)
and
1 oy

Thus, the continuity equation (1) is automatically
satisfied. The proposed pseudo-similarity variable is
denoted by #. The function 7 as defined by equation
(19) adjusts the scale in the y-direction according to a
given body geometry r*(x) and its surface temperature
distribution.

Substitution of equations (18a)-(18c) into equa-
tions (3), (6) and (9) yields

e [(1+2Re*)* +4Gr* )" —1
~ [(142Re*)* +4Gr*'? —1

39
and

0"+ (S —nl)fO —nif'0 = Ix (f’gg 0 %{) (22)

The primes in the foregoing equations denote differ-
entiation with respect to #. The boundary conditions
are

n=0: f=0,0=1 (23a,b)
no00: 0=0. (23c)
The Darcian velocities are given by
u=u,f" (24a)
and
= 2permy | (n-3)r
v=_(Pes 3
1 d Inwu,r* y of
where
dn AT,
n(x) = ‘a—ln T (25)

Equation (21) may be integrated with the aid of equa-
tion (23a) as
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n
L[(1+2Re*)2+4cr* 01" dp—n

St = R 4 4G = 1 (26)

The resulting set of transformed equations (26) and
(22) subjected to equations (23b) and (23c) includes
all possible solutions to free, forced and mixed con-
vection problems of Darcian and non-Darcian fluids.
Once the temperature distribution 6 is known by solv-
ing the set of transformed equations, we may evaluate
the local Nusselt number of our primary concern from

o IeX
ATk

Nu —0'(x,0)(Pe*/I)"2. 27

RESULTS AND DISCUSSION

In what follows, we shall consider possible physical
limiting conditions, and obtain useful asymptotic
expressions for Nu,.

Forced convection regime (Regime I. Re*+ Re*> »
Gr¥)

The physical limiting condition, Re* + Re*? » Gr¥*,
reduces equations (11), (26) and (19) to

Uy = U, (28)
S=n (29
and
j ATZur** dx
dIn AT, Jo Ay
nl= = (30)

dlnx  ATZus*x  ~ 1424,

The preceding expression suggests that similarity solu-
tions are possible when AT, varies according to

AT, o & (31

where

(32)

0

£ EJ ur*® dx

such that the exponent 4, and the product nf remain
constant. Equation (27) for this particular case,
reduces to

din £,\/2
N — 1/2 1/2
u, 0 0)y(1+22)) (—d ™ x) Pe)? (33)
where 6'(0) should be found from the ordinary differ-
ential equation reduced from equation (22), namely

. 1 , A

O+ sa+21)" " Trax,
subjected to equations (23b) and (23¢). dIn ¢,/d In x
in equation (33) may readily be evaluated for any
particular geometry. Especially for a vertical flat plate,
we have dIn £,/d In x = 1. Thus, the present unified
treatment transforms all possible similar flow cases to
the vertical flat plate flow case. The non-Darcy flow

60=0

(34)

expression (33) turns out to be identical to the Darcy
flow expression reported in Nakayama and Koyama
[5], where the local heat flux distributions over a non-
isothermal wedge, cone, sphere and horizontal cir-
cular cylinder may be found. It is interesting to note
that the slug flow heat transfer expression for the
Darcy flows is directly applicable for the case of non-
Darcy forced convection. (But see equation (7) that
the pressure drop under the same u, increases for the
non-Darcy flow case.) To conclude this section, let us
write equation (33) for the isothermal wall case (i.e.
Ay=0)as

1 (dng\?
NMX—W< dlnx> Pe,/'” (isothermal wall).

3%

Darcy free convection regime (Regime II: Re* «
Gr¥ « 1)

Since the initial study on a vertical flat plate by
Cheng and Minkowycz [1], a considerable number of
investigations have been carried out to seek similar
and non-similar solutions (e.g. Merkin [3], and
Nakayama and Koyama [2]). In this regime, the gen-
eral equations (11), (26) and (19) reduce to

u, = Kg.BAT, v (36)
n
f= j 8 dn 37N
1]
and
J ATlg.r**dx
dIn AT, Jo Ay
nl = (38)

dinx  ATlgr*x 1432,

Similarity solutions exist when the wall temperature
varies as

AT, oc &y (39)
where
&= '[ g.r*? dx. (40)
0
Equation (27) for this case reduces to
dln &,\"?
N = 0 1/2 12
U, () (1+34,) (——d n x) Ra)* (41)
where 6(0) should be determined from
” 1 + j'2 ’ " }'2 2
AETIFEYRL (J(, 0d”> iyl T0
42)

Especially for the isothermal wall, we have

dln¢,

Nu, = 0.
i, o444<d]nx

12
> Ra!’? (isothermal wall).
43)
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The results obtained in this section are the same as
those found in ref. [2], where many examples including
the Darcy free convection over ellipses and ellipsoids
are illustrated.

Forchheimer free convection regime (Regime III:
Re* + Re** « Gr* and Gr* » 1)

Only a limited number of cases were reported for
this non-Darcy flow regime [7, 15]. Let us find all
possible similarity solutions from our general
expressions. Equations (11), (26) and (19) for this
regime become

u, = (Kg.pAT,/C)" (44)
[
f= J 0% dn (45)
0
and
foTS"zgl/zr*z dx
_dimar, b 4
YT s ATTT 144
(46)
where
& = J g+ dx. 47
0

Thus, a class of similarity solutions exists when the

wall temperature varies according to
AT, o &% (48)

The heat transfer function, equation (27), for this
case, becomes

dlné,

172
din x> Rar"* (49)

Nu, = —0/©0)(1+ g;.z)'ﬂ(

where 6'(0) should be determined from

2-{-/1; U 2/L3 '
T g | 0vrdn) -2 00 =0
221510 <L d'7> 2454,

(50)

0!/ +

The equation under boundary conditions (23b) and
(23¢) can easily be solved using a standard integration
procedure. For the isothermal wall (i.e. 4; =0), we
obtain —8’(0) = 0.494. Hence, we have

dlné,
dlnx

1/2
Nu, = 0.494( ) Ra*"'* (isothermal wall).

(51

Unlike in the case of Darcy free convection, the heat
flux at the front stagnation point of a blunt body is
estimated as infinity, as equation (51) suggests that
the boundary layer vanishes there.

As pointed out by Bejan and Poulikakos 7], this
Forchheimer flow situation is more likely to prevail
when the flow is sufficiently fast that the boundary

layer approximations are relevant. We numerically
integrated equation (51) to obtain the overall Nusselt
number Nu on a horizontal circular cylinder and plot-
ted the results in Fig. 3 with the experimental data by
Fand et al. [16]. The results based on Darcy’s law are
also indicated for reference. It is clearly seen that the
Forchheimer flow assumption gives a more reason-
able level of the heat transfer rate than the Darcy flow
model, even when the micro-Grashof number Gr* is
of an order of unity. (Thus, the authors feel that one
of the requirements, Gr* > 1 for the Forchheimer
free convection flow, may be somewhat relaxed for
practical heat transfer estimations.)

So far, we have investigated three distinct flow
regimes, namely, the forced convection regime, the
Darcy free convection regime and the Forchheimer
free convection regime, and obtained all possible simi-
larity solutions. In what follows, we shall consider
the intermediate regimes, namely, the Darcy mixed
convection regime, the Darcy—Forchheimer free con-
vection regime and the Forchheimer mixed convection
regime, bridging the aforementioned three asymp-
totic flow regimes. We shall see that the requirements
for these intermediate flow regimes are naturally more
restrictive.
Darcy mixed convection V.
Gr¥ ~ Re* « 1)

Many investigators such as Cheng [4] and Naka-
yama and Koyama [5] attacked the problems of the
Darcy mixed convection using the local Peclet number
to form a similarity variable. In their analyses,
however, the asymptotic solutions for the buoyancy
dominated flows were not possible, since the Peclet
number vanishes under such a condition. The present
unified treatment, as can be seen from equation (16a),
never suffers from such singularities.

In this mixed convection regime, equations (11),
(26) and (19) reduce to

u, = u.+Kg pAT, /v

regime (Regime

(52)

102~ )
Glass bead diometer
© 3 mm

o 4mm Experiment, Fond et a(. (161

Present. formula, equotior} (5l)
Nu=28 (KgBAT, D/a?)"*

GuD/DT k

Nu

Darcy's Llaw
Nu=0565(kg BAT, D/av)?

i | ]
) 102 103

kg BAT, D/a?

FIG. 3. Nusselt number on a horizontal circular cylinder.
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Re* n+Gr* r 0dn
and
dIn AT, '[: ATZu -**(14+Gr*/Re*)dx
M= Tinx  AT2ur*(1+Gr*/Re)x
= Ay
1424,
dln AT, Lx AT g.r**(1+ Re*/Gr*) dx
T dlnx  AT3g.r**(1+Re*/Gr¥)x
Thus, similarity solutions are allowed only when
Gr*/Re*(=Ra,/Pe,) oc AT,g./u. = const. (55)
and
AT, oc & (56a)
or equivalently
AT, oc &4, (56b)
Subsequently, we have
Nu, = (=0'(0)/1'*)(Pe,+Ra,) " (57)
where
1= +2;.,)‘ji]1':fx' = (1+34,) ‘:111‘:15;. (58)

The previous study on this flow regime [5] reveals
that only a limited number of similarity solutions are
possible because of the very much restrictive require-
ments (55) and (56). Similarity solutions are found
for an isothermal cylinder or sphere, and a vertical
wedge or cone with its surface temperature varying
with the same power index as that of the boundary
layer edge velocity.

In general, — 6’(0) must be determined numerically
from equation (22) with equations (53) and (54) sub-
stituted for. (Note, all right-hand side terms in equa-
tion (22) vanish for similarity solutions.) For the iso-
thermal wall, however, the following approximate
formula, which closely follows the numerical inte-
gration results, may be adequate :

, 1 [140.62Gr*/Re*\?
—0O =2 (W) 9
Hence
1 [dIné& "2 .
NuV = F ( dn x> (Pe,(+062Ra,)
(isothermal wall) (60)

where dIné,/dInx=dIn¢,/dInx since relation
(55), g, oc u, under the isothermal wall, must hold.
The foregoing Nu, expression asymptotically reduces
to equation (35) for Ra,/Pe,— 0 and equation (43)
for Ra,/Pe.— c0. As observed in Fig. 4, expression
(60) closely approximates the exact solution [5].

Darcy—Forchheimer free convection regime (Regime
V:Gr* ~ 1 and Re* « 1)

Plumb and Huenefeld [8] were the first to find a
similarity solution for an isothermal flat plate in this
non-Darcy flow regime. Another class of similarity
solutions was found by Nakayama et al. [9] for curved
surfaces where the wall temperature decreases in the
streamwise direction. However, the isothermal flat
plate solution appears to be the only similarity solu-
tion of physical interest.

Let us generate the similarity solutions from the
general equations (11), (26) and (19) as

v

Uy = s [(14+4Gr) "7 —1] (61)
" .
j(l+4Gr* 0)* dp—n
0
S=araem o (©2
and
f AT r**[(14+4Gr) " —1] dx
_dlnATw 0
ME Ay ATI(1+4Gr) T —1)x
—_— /14 -
=T ©

For the product nl to be constant, we must satisfy
Gr* o g AT, = const. (64)

and

Isothermal walt

[
~
>
¢
..1 x
Els
'va
~
g
04 — Present formula, equation (60)
=== Exact solution [5]
o2

o ! I
o] (o]

I
JRPSE Ny
Ray/Fe,=Gr'/Re

F1G. 4. Heat transfer results on Darcy mixed convection.
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AT, oc &

= f r*2 dx.
0

Thus, we have obtained the same similarity require-
ments as already found in the previous study [9].
The local Nusselt number for this non-Darcy free
convection regime is given by

Nu, = —0/0)(1+24,)"? @ﬁ) J

(65)

where

(66)

dlnx

(1+4Gr*)2 —1\/2
x(Rawa . (67)

Especially for the isothermal case, we propose the
following approximate formula :
1]2]1,’2 dln é4 12
dinx

1+4Gr) 2 — 1\
X <Ra\ Hzé:*) (isothermal wall)

[16Gr*” —[(144Gr*) "2 —

Nu, = 8Gr*

(68)

where —0’(0) has been approximated by modifying
the Bejan—Poulikakos formula [7] based on Oseen’s
linearized solution, such that it closely follows the
asymptotic expressions, namely, equation (43) for
Gr* « 1 and equation (51) for Gr* » 1. (Note
diné,/dinx=dIné,/diInx=dIné&;/dInx, since
the relation g, oc 1/AT,, = const. must hold for this
isothermal case.) The proposed formula for the iso-
thermal wall is shown along with the exact values
[7] in Fig. 5, where excellent agreement between the
formula and exact values can be seen.

Forchheimer mixed convection regime (Regime VI:
Gr* ~ Re** » 1)

Only a limited number of non-Darcy mixed con-
vection problems have been treated so far. Recently,
Kumari and Nath [13] attacked the mixed convection
over an isothermal vertical cylinder in a porous
medium, retaining both the Darcy and Forchheimer
terms. The heat transfer results were obtained for the

O™ mmmm Present formuta, equation (68)

08I~ o Exact values, Bejan-Poutikakos [71
IN 011 out
s
& odmT ——_,
oIl \
£l
©vio

02~

M/
[

ol
| 10 102

Gr*

F1G. 5. Heat transfer results on Darcy—Forchheimer free
convection.

102 107!

Nakavama and 1. Pop

specific case of Re* = 1, with Gr* varying from 0.1 to
100. Let us investigate this unexplored flow regime.

The general expressions (11), (26) and (19), in this
flow regime, reduce to

= (u;+K"’g BAT,/C)'? (69)
n
J (Re*> +Gr* 0)'/* dy
]
/= R G 70
and
J AT2u r*>(14 Gr*/Re*?) dx
dlnAT Jo
" dlnx  AT2us**(1+Gr*/Re*?)x
— /:|
T 1+27,
JAT@’Z V2214 Re*2/Gr) dx
_dInAT,
dlnx  AT>?gY2p*2(] + Re*?/Gr*)x
_m
=t¥u, D

Thus, similarity solutions are possible only when

Gr¥/Re**(= Ra*/Pe?) o AT, g./ul = const. (72)
and
AT, oc &% (73a)
or equivalently
AT, oc &. (73b)
Correspondingly, we have
Nu, = (=60 (0)/I"*)(Pel+ Ra*)"* (74)
where
= (1424) 1“5’ L= (14} /13)‘““5‘ (75)

Let us consider possible situations where require-
ments (72) and (73) are satisfied. The potential flow
theory tells that the free stream velocity over a wedge
or a cone varies according to u. oc x”, where the
exponent m is some function of the wedge angle or
the cone apex angle. Since g, is constant for a vertical
wedge or a cone, pointing downward, we must have
AT, o« x*™ (i.e. n = 2m) for requirement (72) to be
satisfied. The other requirement (73) may be used to
find the value of either 4, or 4. Thus, for these similar
flow cases, the product nl needed for the solution of
equation (22) becomes a function of m as

2m )
nl = TF5m for a vertical wedge (76a)
and
=y, tical (76b)
nl=55, or a vertical cone.
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2 Present formula, equation (79)
®  Exact values, Kumari-Nath [I51
]
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F1G. 6. Heat transfer results on Forchheimer mixed
convection.

In a similar fashion, we can show that the flow around
the front stagnation point of a horizontal circular
cylinder or a sphere with its wall temperature varying
according to AT, oc sin (x/R) (where R is the radius)
admits similarity solutions. The product »/ for these
stagnation regions should be set to

nl = 1/4 for a horizontal circular cylinder (77a)

and

nI = 1/6 for a sphere. (77b)

Equation (22) with equation (70) and »f given by
(76) or (77) can easily be solved numerically to find
—0'(0). However, for the isothermal case (i.e. n/ = 0),
we propose the following approximate formula which
can conveniently be used for heat transfer estimation
with a sufficient accuracy:

(

1

, 140.59Gr*/Re*?
—0'0) = il e e

1/4
1+ Gr*/Re* ) -

Hence

Gr*

1

H66r*2-(1+ 46r*)V2-1121Y2
Nuy =

*
Ray (1+46r")
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where dIlné,/dlnx=dIné&,/dInx since relation
(72), namely, u, oc g/ under the isothermal wall,
must hold. The above formula naturally generates
the asymptotic expression for the forced convection
regime (i.e. equation (35)) as Ra*/Pe! — 0, and that
for the Forchheimer free convection regime (i.e. equa-
tion (51)) as Ra*/Pel — 0.

The vertical cylinder results obtained for a fixed
Re* value (i.e. Re* = 1) by Kumari and Nath [13]
belong to the ordinate axis of the flow regime map
shown in Fig. 2. (Their analysis on a vertical cylinder
includes the radial curvature effects. However, for
large Pe, such effects may well be neglected, and the
solution reduces to the one for the vertical flat plate.)
As we increase Gr* along the ordinate axis, we go
from the forced convection regime (Regime I) to the
Forchheimer free convection regime (Regime III).
The curve Nu,/Pe!’” for Re* = 1 was generated using
the foregoing approximate equation (79), and plotted
in Fig. 6 with the finite calculation results of Kumari
and Nath. The figure suggests that our expression (79)
is quite accurate even for the case of Gr* ~ 1 originally
excluded from this flow regime.

/2
) (Pe40.59Ra*)"*

(isothermal wall) (79)

CONCLUDING REMARKS

In this article, we showed that the slip velocity at
the wall resulting from the externally forced flow and
the buoyancy force, virtually governs the heat transfer
rate at the wall. Upon introducing a modified Peclet
number based on the slip velocity, we transformed the
governing equations, once for all possible cases of
free, forced and mixed convection in Darcy and non-

z_y

/2 equation (68)

aGr*

26r* !

Ny 7= (Pef +059Ra})* equation (79)

Re*

/

Nuy= 2= (Pex+ 0.62 Ray )% equation (60)

F1G. 7. Proposed heat transfer formulas for an isothermal flat plate.
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Darcy porous media. This unified treatment for trans-
formations reveals that convective flows can be classi-
fied into three flow regimes, namely, the forced convec-
tion regime, the Darcy free convection regime and the
Forchheimer free convection regime, depending on the
magnitudes of the micro-scale Reynolds and Grashof
numbers based on the square root of the permeability.
Upon considering physical limiting conditions, all
possible similarity solutions for these three regimes
have been extracted from the transformed governing
equations, and a flow regime map based on the micro-
Reynolds and Grashof number has been constructed.

Furthermore, another three intermediate flow
regimes (bridging the aforementioned three regimes),
namely, the Darcy mixed convection regime, the
Darcy-Forchheimer free convection regime and the
Forchheimer mixed convection regime have been
investigated to establish the Nusselt number
expressions which naturally reduce to the cor-
responding asymptotic expressions under appropriate
physical limiting conditions. Especially, for the case
of isothermal vertical flat plates (1.e. 2, = 0and d In &/
dinx=1 for i=1, 2, 3 and 4), the three Nusselt
number expressions derived for these intermediate
regimes overlap onto one another, as illustrated in
Fig. 7. These three expressions which guarantee
sufficient accuracy may be quite useful for practical
estimations of heat transfer rates. Perhaps, one should
consult with the flow regime map and corresponding
asymptotic expressions provided in this study, before
sitting in front of a computer terminal to carry out
numerical integrations for a number of sets of the flow
parameters, since the flow regime map and asymptotic
expressions may save a significant amount of com-
puter time which would otherwise be necessary to
perform such a parametric study.
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UNE TRANSFORMATION AFFINE UNIFIEE POUR LA CONVECTION NATURELLE
OU FORCEE OU MIXTE DANS DES MILIEUX POREUX DARCYENS OU NON

Résumé—On propose une transformation affine unifiée pour extraire toutes les solutions affines possibles
de la convection naturelle, ou forcée ou mixte dans des milieux poreux darcyens ou non. La vitesse de
glissement a la paroi résultant de I’écoulement forcé externe et de la force de flottement est choisie comme
échelle de vitesse pour former un nombre de Peclet modifié qui le transforme naturellement en nombre de
Peclet conventionnel et en nombre de Rayleigh dans certaines conditions physiques particuliéres. Ce
traitement unifié révéle trois régimes d’écoulement limitants: le régime de convection forcée, celui de
convection naturelle selon Darcy et celui de convection naturelle selon Forchheimer, ainsi que trois autres
régimes intermédiaires qui sont celui de convection mixte selon Darcy, celui de Darcy-Forchheimer en
convection naturelle et celui de convection mixte selon Forchheimer. Pour distinguer ces régimes on a
trouvé des paramétres significatifs qui sont les nombres de “micro-échelle” de Reynolds et de Grashof,
basés sur la racine carrée de la perméabilité. Une carte de régime d’écoulement est construite pour montrer
ces six régimes différents en portant en abscisse et en ordonnées les deux nombres adimensionnels de micro-
échelle. Des expressions asymptotiques données sont trés utiles pour l'estimation pratique du transfert
thermique convectif dans les milieux poreux.
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FINE VEREINHEITLICHTE AHNLICHKEITSTRA_NSFORMATION FUR FREIE,
ERZWUNGENE UND MISCH-KONVEKTION IN POROSEN MEDIEN INNERHALB UND
AUSSERHALB DES DARCY’SCHEN BEREICHES

Zusammenfassung—FEs wird eine vercinheitlichte Ahnlichkeitstransformation vorgeschlagen, um alle
mdglichen Ahnlichkeitslosungen fiir freie, erzwungene und Misch-Konvektion in pordsen Medien inner-
halb und auBerhalb des Darcy’schen Bereiches zu ermitteln. Die Gleitgeschwindigkeit an der Wand
aufgrund der duBeren erzwungenen Stromung und aufgrund von Auftriebskriften wird als Gesch-
windigkeitsmaBstab herangezogen. Damit wird eine modifizierte Peclet-Zahl gebildet, die unter bestimmten
physikalischen Grenzbedingungen naturgema8 in die konventionelle Peclet- und Rayleigh-Zahl (ibergeht.
Dieses vereinheitlichte Verfahren 148t als Extremfélle drei Stromungsbereiche erkennen: den Bereich
erzwungener Konvektion, den Bereich der freien Konvektion nach Darcy und den Bereich der freien
Konvektion nach Forchheimer. Dazwischen liegen drei weitere Bereiche: die Misch-Konvektion nach
Darcy, die freie Konvektion (Darcy-Forchheimer) und die Misch-Konvektion nach Forchheimer. Die zur
Unterscheidung dieser Strémungsgebiete relevanten Strémungsparameter sind die Reynolds- und die
Grashof-Zahl fiir die Vorginge im kleinen (beide beruhen auf der Quadratwurzel aus der Permeabilitit).
Diese beiden Kennzahlen werden auf der Abszisse bzw. auf der Ordinate aufgetragen, wodurch sich
eine Strémungsbereichskarte ergibt, die die genannten sechs Strémungsgebiete zeigt. Die asymptotischen
Ausdriicke, welche fiir diese Strémungsgebiete entwickelt worden sind, erscheinen fiir praktische Berech-
nungen des konvektiven Wirmetransports in porosen Medien innerhalb und auBerhalb des Darcy’schen
Bereiches niitzlich.

OBOBHIEHHOE ITPEOBEPA3OBAHHE MOAOBUSA IS CBOBOJHON, BEIHYXAEHHON U
CMEIMAHHOM KOHBEKLIUH B KJIACCUYECKHX U HEKJIACCUYECKHX IOPHUCTHIX
CPEJIAX

Ammoramms—TIpeanoxeno ofobmennoe mpeobpasopanne nofobus, HO3BOJLIOWEE NONYIATE BCE BO3-
MOXHbIC PEIiCHHS /1% CBOOOAHOM, BHIHYKICHHOH H CMEIUAHHON KOHBEKIMH B DA3AHYHBIX TOPHCTRIX
cpenax. CKOpOCTh CKOJIBXKCHHR Y CTEHKH, O0YCJIOBICHHAS BLIHYXOCHHBIM Te4CHHEM 3a CHET BHEUNHHX
CHJI ¥ NOJBEMHBLIMY CHIIAMH, BHOpaHa B KauecTBe XapakTEPHOH CKOPOCTH st o6pazopanus MoandHia-
posaunoro uucina Ilekne, KOTOpOE UPH HEKOTOPHIX (PU3HYECKHX OPEAEILHWX YCIOBHSX €CTECTBEHHBIM
ofpa3oM nepexofuT B oGmmxHOBeHHble uncna Ilexie w Panes. Onuckiaemas ofo6ineHHas MeTomka
TIO3BOJISCT PA3AYNTh TPH OPEACALHLIX PEXHMA TEUEHHSH, A HMEHHO, PEXUM BBHYKICHHON KOHBEKUMH,
csobonHokoHBeKTHBHOE Teuerue JlapcH, cBOGONHOKOHBEKTHRHOE TedeHne dopiixaiiMepa, a Takke TPH
TPOMEXYTOYHBIX PeXMMa, 2 HMEHHO, CMelIanHas KoHBekuus JlapcH, ceoGomnas Konsexuus Japcu—
dopuixaiiMepa 1 pexuM cMelaHRoH xonsexiua PopuixaitMepa. Halineno, 410 ompeensromumu napa-
METPaMH TEUCHHS, DalIMYAIOIMME JaHHBE pPEKHMBL, SBJIMOTCHE “MEKpoMaciutabupie” umcna
Peiinonbaca u I'pacroda Ha OCHOBE XBAAPATHOTO KOPHS BEHMAHE! IPOHUUAeMOCTH. [LIs wumOCTpany
LIECTH YKa3aHHBIX PEXHMOB TEYEHHS COCTARNCHA KAPTA ¢ HCHONb30BAHHCM MHKpOMAcIuTaGHBIX Ge3pas-
MEDHBIX YHCEN B KAYeCTBE NMEPEMEHHBIX abcmmechl B opauHaThl. [ToaydweHHbie Uil JAHHLIX PEXHMOB
TEUCHHUS ACHMITTOTHYECKHE BHIPAKCHHA MOTYT NIPHMEHATHCH [UIA IPAKTHYECKOH OLIEHKH KOHBEKTHBHOTO
TEIUIONEPEROCa B CPENAX, MONYAHAIONIHXCA H He NOIYHAIOWMXCS 3akony Japen.
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