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Abstract-A unified similarity transformation is proposed to extract all possible similarity solutions for 
free, forced and mixed convection within Darcy and non-Darcy porous media. The slip velocity at the wall 
resulting from both the externally forced flow and the buoyancy force is chosen as a velocity scale to form 
a modified Peclet number which naturally transforms into the conventional Peclet number and Rayleigh 
number under certain physical limiting conditions. This unified treatment reveals three limiting flow 
regimes, namely, the forced convection regime, the Darcy free convection regime and the Forchheimer free 
convection regime, as well as three other intermediate flow regimes, namely, the Darcy mixed convection 
regime, the Darcy-Forchheimer free convection regime and the Forchheimer mixed convection regime. 
Relevant flow parameters for distinguishing these flow regimes are found to be the ‘micro-scale’ Reynolds 
and Grashof numbers based on the square root of the permeability. A flow regime map has been constructed 
to show these six different flow regimes, taking the two micro-scale dimensionless numbers as the abscissa 
and ordinate variables, Asymptotic expressions derived for these flow regimes appear quite useful for 

practical estimation of convective heat transfer within Darcy and non-Darcy porous media. 

INTRODUCTION 

MOST of the studies devoted to the field of convective 
flow within porous media are based on the Darcy flow 

model, in which the pressure gradient is assumed to 
be in proportion to an apparent velocity, namely, the 
Darcian velocity. The initial work on Darcian free 
convection over a vertical flat surface was carried out 
by Cheng and Minkowycz [ 11, while Nakayama and 
Koyama [2] generalized the similarity transformation 
proposed by Merkin [3], for Darcian free convection 
over a non-isothermal body of arbitrary shape. Mixed 
convection problems were also attacked by some 
workers, using the Darcy flow model. Similarity solu- 
tions have been found for the mixed convection flow 
over isothermal bodies [4] and non-isothermal bodies 
[S] placed in a fluid-saturated porous medium. 

It is, however, well known that the Darcy flow 
model breaks down, when the inertia resistance 
(owing to wake and separation bubbles formed 
behind a micro-structure) becomes comparable to the 
viscous (Darcy) resistance. Forchheimer [6] proposed 
a quadratic term in Darcian velocity to describe the 
inertia effects. Bejan and Poulikakos [7] pointed out 
that this non-Darcy flow model should be employed 
for all high velocity flows in porous media with low 
permeability, if we are to resolve the conflict, namely, 

that the Darcy flow model deteriorates as the bound- 
ary layer approximation improves, and vice versa. 
Plumb and Huenefeld [S] attacked non-Darcian free 
convection over a vertical isothermal flat plate. Their 
work was followed by Nakayama et al. [9] to study 
possible geometries and their corresponding wall tem- 
perature distributions, which permit similarity solu- 
tions. Non-Darcy free convection from a vertical plate 
with mass transfer was treated by Kumari et al. [lo], 
while non-Darcy free convection over a slender ver- 
tical frustum of a cone was investigated by Vasantha 
et al. [l 11. The studies of non-Darcy mixed convec- 
tion, on the other hand, have been limited only for a 
horizontal flat surface [ 121 and a vertical cylinder [ 131, 
so far. 

In this paper, we shall present a unified similarity 
transformation procedure which yields classes of 
possible similarity solutions for free, forced and mixed 
convection of Darcian and non-Darcian fluids. 
Almost all similarity solutions already reported in the 
literature are readily reducible from the present set of 
general differential equations. Another new class of 
similarity solutions is also found in the Forchheimer 
flow regime where the flow is so strong that the Darcy 
resistance is negligible when compared with the inertia 
resistance. This unified similarity treatment reveals 
that there exist three limiting flow regimes, namely, 

351 



358 A. NAKAYAMA and 1. POP 

NOMENCLATURE 

C empirical constant associated with RUT modified Rayleigh number, defined in 
porous inertia equation (15) 

f dimensionless stream function Re* micro-scale Reynolds number, defined in 

9Y tangential component of acceleration due equation (lOa) 
to gravity T temperature 

Gr* micro-scale Grashof number, defined in AT, wall-ambient temperature difference 
equation (1 Ob) u, 1 Darcian velocity components 

I function defined in equation (19) x, J boundary layer coordinates 
k thermal conductivity z elevation measured from the lower 
K permeability stagnation point. 
m exponent associated with the free stream 

velocity, u, cc xm 
n exponent associated with the wall Greek symbols 

temperature, defined in equation (25) o! equivalent thermal diffusivity of the fluid- 

Nu, local Nusselt number, defined in saturated porous medium 
equation (27) B coefficient of thermal expansion 

P pressure V similarity variable, defined in equation 

Pe, local Peclet number, defined in equation (18~) 
(12a) 0 dimensionless temperature 

Pe: modified Peclet number, defined in iLl 4 exponents introduced in equations (3 I), 
equation (13) (39), (48) and (65) 

4u wall heat flux p viscosity of the fluid 
r function representing wall geometry kinematic viscosity of the fluid 
r* 1 for plane flow and r for axisymmetric li, 4 variables defined in equations (32) (40) 

flow (49) and (66) 

Ra., local Rayleigh number, defined in P density of the fluid 
equation (12b) II, stream function. 

the Forchheimer free convection regime, the Darcian governing equations, namely, the equation of con- 
free convection regime and the forced convection tinuity, the non-Darcy flow model (i.e. Ergun model 
regime. Appropriate dimensionless groups for dis- [ 141) and the energy equation are given by 
tinguishing these regimes are found to be the micro- 
scale Reynolds and Grashof numbers based on the 
length scale of the micro-structure, namely, the square 
root of the permeability. A regime map showing these 
asymptotic flow regimes and their boundaries cor- 

responding to the Darcy mixed convection, the 
Darcy-Forchheimer free convection and the Forch- and 

heimer mixed convection regime, has been con- 
structed taking the micro-Reynolds number and the 
micro-Grashof number as the ordinate and abscissa 

variables. 

i?r*u ar*v 
x+%=0 (1) 

P 
-a+ Sll = - $ -@jX+pg,/3(T-- T,) 
K JK 

(2) 

GOVERNING EQUATIONS AND BOUNDARY 
CONDITIONS 

In Fig. 1, we shall consider a plane or axisymmetric 
body of arbitrary shape, embedded in a fluid-satu- 
rated porous medium. The geometry and wall tem- 
perature of the heated body are specified by the func- 
tions of the boundary layer coordinate x, namely, r(x) 

and T,(x). The external velocity u,(x) for the given 
geometry r(x) may readily be obtained from the 
potential flow theory. 
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where 

and 

8T aT 8T 
u~+vy=~~ (3) 

1: plane flow 
r* = 

r(x) : axisymmetric flow (41 

(5) 

In the foregoing equations, u and v are the Darcian 
velocity components, while T is the local temperature. 
The Boussinesq approximation is evoked for the 
buoyancy force. Furthermore, g: is the tangential 
component of the acceleration due to gravity g ; K the 
~~eabiIity ; Can empirical constant associated with 
the non-Darcy porous inertia term; p the fluid den- 
sity ; p the fluid viscosity ; c( the equivalent thermal 
diffusivity of the fluid saturated porous medium ; j3 the 
coefficient of thermal expansion. The corresponding 
boundary conditions are 

y=o: u=O,T=T,(x) (6a,b) 

y-+co: u = u,(x), T = T,. (6W 

Let us write equation (2) along the boundary layer 
edge (y -+ co) utilizing the boundary conditions, 
equations (6~) and (6d) 

where z is the elevation measured from the front 
stagnation point. The foregoing equation may be sub- 
stituted into equation (2) to eliminate the pressure 
term as 

The foregoing quadratic equation may be solved for 
u as 

V 

U=2CJK [[ 
(1-~2Re*)~+4Gr* 

(9) 

where 

Re*(x) = c JKU,& UW 
Gr*(x) = CK3’2g,j3ATw/v2 (lob) 

and 

AT,(x) = T, - T,. (1Oc) 

Hence, the slip velocity at the wall U, is given by 

u, = ~--[[(li2Re*)2+4Gr*]1~‘-1] (11) 

where Re* and Gr* are what we may call the ‘micro- 
scale’ Reynolds and Grashof numbers, respectively, 

in which the reference length scale is chosen to be the 
length scale of the micro-structure, namely, the square 
root of the permeability of the porous medium. 

MODIFIED PECLET NUMBER AND FLOW 

REGIME MAP 

Most previous studies on mixed convection cor- 
relate the local Nusselt number in terms of either the 
local Peclet number 

Fe, = u,x/u (12a) 

(for the forced flow dominated case), or the local 
Rayleigh number 

Ra, = KgXfiAT&xv Wb) 

(for the buoyancy force dominated case). However, 
any mixed convection analysis which uses either Pe, 
or Ra, inevitably suffers from a singularity under a 
certain physical limiting condition. (For example, if 
Pe, is used for scaling, a singularity will appear as 
Ra,JPe, + co.) Moreover, the velocity field is estab- 
lished as the result of both the external flow and the 
buoyancy force. Naturally, it is the total velocity mag- 
nitude over the heat transfer surface that virtually 
determines convective heat transfer from the heated 
surface. Thus, in our unified treatment, we shall 
choose the slip velocity at the wall as a velocity scale, 
and propose a new dimensionless number, namely, 
the modified Peclet number 

Pe* _ u,x _ pe [Cl +2Re*Y+4Gr*l”2-1 
x 

c13) 

u 
1 2Re* 

to correlate the local Nusselt number. It can easily be 
shown that Pe_z transforms itself into 

Pe: = Pe, for Re* + Re* 2 B Gr* 

(I : forced convection regime) (14a) 

Pe;* = Ra, for Re* << Gr* << 1 

(II : Darcian free convection regime) (14b) 

Pe* = Ra,*li2 for Re*+ Re*’ << Gr* and Gr* s 1 I 

(III : Forchheimer free convection regime) (14~) 

where 

Ra.: = ~‘K~~~AT~x~~C~~ (15) 

may be identified with the new dimensionless number 
that Bejan and Poulikakos [7] found through a scale 
argument. 

The foregoing three flow regimes, namely, the 
forced convection regime, the Darcy free convection 
regime and the Forchheimer free convection regime, 
are identified by I, II and III, respectively, in Fig. 2. 
Another three distinct regimes (connecting the fore- 
going three regimes), namely, the Darcy mixed con- 
vection regime (IV), the Darcy-Forchheimer free con- 
vection regime (V) and the Forchheimer mixed 
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FIG. 2. Flow regime map. 

convection regime (VI), may be identified, in which 

Pez = Pe, + Ru, for Gr* - Re* cc 1 

(IV : Darcy mixed convection regime) (16a) 

(1+4Gr*)“‘-1 
Pe.f = RR,----_Gr* 

for Gr* N 1 and Re* cc 1 

(V : Darcy-Forchheimer free convection regime) 

(16b) 

Pe,* = (Pe:+Ra,*)‘:* for Gr* - Re*” >> 1 

(VI : Forchheimer mixed convection regime). (16~) 

Thus, the modified Peclet number Pez reduces to 
appropriate dimensionless numbers, corresponding to 
the values of the micro-scale dimensionless numbers, 
Re* and Gr*. We have introduced three macro-scale 
~mensionless numbers and two micro-scale dimen- 
sionless numbers. However, only three among these 
five dimensionless numbers are independent, since we 
have the following inter-relations between the macro- 
and micro-dimensionless numbers : 

and 

Gr*/Re* = Ra,y/Pe, Wa) 

Gr*}Re*’ = Ra.f/Pe:. (17b) 

UNIFIED TREATMENT FOR TRANSFORMING 

EQUATIONS 

Having estabhshed the modified Peclet number Pe,*. 
we shall propose the following transformations : 

I) = ctr*(PeT I) “*f(x, q) WW 

T- T, = AT,&&, q) VW 

and 

where 

I 

i 
AT2u re2 dx w * 

I= O 
AT’u r*2.x w U’ 

and $ is the stream function such that 

and 

(1% 

1 ali/ fj=-.-- 
r* dx’ 

Thus, the continuity equation (1) is automatically 
satisfied. The proposed pseudo-similarity variable is 
denoted by q. The function I as defined by equation 
(19) adjusts the scale in the y-direction according to a 
given body geometry r*(x) and its surface temperature 
distribution. 

Substitution of equations (Isa)-( 18c) into equa- 
tions (3), (6) and (9) yields 

f’ = [(1+2Re*)‘+4Gr* 01”‘-1 

[(I +2Re*)2f4Gr*f”2- 1 (21) 

and 

The primes in the Foregoing equations denote differ- 
entiation with respect to q. The boundary conditions 
are 

n=o: f=O,B= 1 

$?-+so: o=o. 

The Darcian velocities are given by 

u = U,f 

and 

(23a,bl 

(23~) 

(24a) 

where 

d In AT, 
n(x) = -d-E’ (25) 

Equation (21) may be integrated with the aid of equa- 
tion (23a) as 
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s ’ [(1+2Re*)*+4Gr* 0]‘12 drl-q 

O .f(x, rl) = [(l+2Re*)2+4Gr*]“2-l . (26) 

The resulting set of transformed equations (26) and 
(22) subjected to equations (23b) and (23~) includes 
all possible solutions to free, forced and mixed con- 
vection problems of Darcian and non-Darcian fluids. 
Once the temperature distribution 6 is known by solv- 
ing the set of transformed equations, we may evaluate 
the local Nusselt number of our primary concern from 

qwx 
Nux = AT,k 

~ = -o'(x,0)(Pe:/Z)'/2. (27) 

RESULTS AND DISCUSSION 

In what follows, we shall consider possible physical 
limiting conditions, and obtain useful asymptotic 
expressions for NM,. 

Forced convection regime (Regime I: Re* + Re* 2 B 
Gr*) 

The physical limiting condition, Re* + Re* 2 >> Gr*, 
reduces equations (1 1), (26) and (19) to 

u, = u, (28) 

f=rl (29) 

and 

s x 

AT2u re2 dx 
dInAT, o w e 

nl= 2, 
d In x AT,$,r*‘x =m. (30) 

The preceding expression suggests that similarity solu- 
tions are possible when AT, varies according to 

AT,,, cc t:l (31) 

where 

5, = 
j 

Xu,r*2 dx (32) 
0 

such that the exponent 2, and the product nl remain 
constant. Equation (27) for this particular case, 
reduces to 

Pe)j2 (33) 

where Q’(0) should be found from the ordinary differ- 
ential equation reduced from equation (22), namely 

8”+ 
1 1, 

2(1+21,) 
T/0’-- ~ 

1+21, 
e=o (34) 

subjected to equations (23b) and (23~). d In 5 Jd In x 
in equation (33) may readily be evaluated for any 
particular geometry. Especially for a vertical flat plate, 
we have d In r r/d In x = 1. Thus, the present unified 
treatment transforms all possible similar flow cases to 
the vertical flat plate flow case. The non-Darcy flow 

expression (33) turns out to be identical to the Darcy 
flow expression reported in Nakayama and Koyama 
[5], where the local heat flux distributions over a non- 
isothermal wedge, cone, sphere and horizontal cir- 
cular cylinder may be found. It is interesting to note 
that the slug flow heat transfer expression for the 
Darcy flows is directly applicable for the case of non- 
Darcy forced convection. (But see equation (7) that 
the pressure drop under the same U, increases for the 
non-Darcy flow case.) To conclude this section, let us 
write equation (33) for the isothermal wall case (i.e. 
I, =O)as 

Pe:‘2 (isothermal wall). 

(35) 

Darcy free convection regime (Regime II: Re* -K 
Gr* << 1) 

Since the initial study on a vertical flat plate by 
Cheng and Minkowycz [ 11, a considerable number of 
investigations have been carried out to seek similar 
and non-similar solutions (e.g. Merkin [3], and 
Nakayama and Koyama [2]). In this regime, the gen- 
eral equations (11) (26) and (19) reduce to 

uw = KsxBATwIv (36) 

(37) 

and 

x 

AT,&r* 2 dx 

d= 
s dInAT, o 12 

d In x ATzg,r* 2x -1+3122. (38) 

Similarity solutions exist when the wall temperature 
varies as 

AT, cc 5”,2 (39) 

where 

t2 = 
5 

‘g,ri2 dx. (40) 
0 

Equation (27) for this case reduces to 

Ra,‘12 (41) 

where e’(0) should be determined from 

8”+ 02 = 0. 

(42) 

Especially for the isothermal wall, we have 

‘I2 
Rail2 (isothermal wall). 

(43) 
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The results obtained in this section are the same as 
those found in ref. [2], where many examples including 
the Darcy free convection over ellipses and ellipsoids 
are illustrated. 

Forchheimer free convection regime (Regime III: 

Re* + Re*2 CC Gr* and Gr* >> 1) 

Only a limited number of cases were reported for 
this non-Darcy flow regime [7, 151. Let us find all 
possible similarity solutions from our general 

expressions. Equations (1 I), (26) and (19) for this 
regime become 

and 

(44) 

(45) 

s I 

dInAT, o 
AT22gi12r*2 dx I 

nr = 
_ A3 

d In x AT:2gl’2r*2x - 1 +$i, 

where 

(46) 

<, z ‘gb:2r*2 dx. 
s 

(47) 
0 

Thus, a class of similarity solutions exists when the 
wall temperature varies according to 

AT, x [;1. (48) 

The heat transfer function, equation (27), for this 

case, becomes 

Ra: ‘I4 (49) 

where 0’(O) should be determined from 

“‘+ 2(2+51,) 
2+1,3 ,f(~~++&~‘~~=O~ 

(50) 

The equation under boundary conditions (23b) and 
(23~) can easily be solved using a standard integration 
procedure. For the isothermal wall (i.e. 1, = 0), we 
obtain -t?‘(O) = 0.494. Hence, we have 

Ra,* ‘I4 (isothermal wall) 

(51) 

Unlike in the case of Darcy free convection, the heat 
flux at the front stagnation point of a blunt body is 
estimated as infinity, as equation (51) suggests that 
the boundary layer vanishes there. 

As pointed out by Bejan and Poulikakos [7], this 
Forchheimer flow situation is more likely to prevail 
when the flow is sufficiently fast that the boundary 

layer approximations are relevant. We numerically 
integrated equation (51) to obtain the overall Nusseh 
number Nu on a horizontal circular cylinder and plot- 
ted the results in Fig. 3 with the experimental data by 

Fand et al. [ 161. The results based on Darcy’s law are 
also indicated for reference. It is clearly seen that the 
Forchheimer flow assumption gives a more reason- 

able level of the heat transfer rate than the Darcy flow 
model, even when the micro-Grashof number Gr* is 
of an order of unity. (Thus, the authors feel that one 
of the requirements, Gr* >> 1 for the Forchheimer 

free convection flow, may be somewhat relaxed for 
practical heat transfer estimations.) 

So far, we have investigated three distinct flow 
regimes, namely, the forced convection regime, the 

Darcy free convection regime and the Forchheimer 
free convection regime, and obtained all possible simi- 
larity solutions. In what follows, we shall consider 
the intermediate regimes, namely, the Darcy mixed 
convection regime. the DarcyyForchheimer free con- 
vection regime and the Forchheimer mixed convection 
regime, bridging the aforementioned three asymp- 
totic flow regimes. We shall see that the requirements 
for these intermediate flow regimes are naturally more 
restrictive. 

Darcy mixed convection regime (Regime IV: 

Gr* - Re*<< 1) 

Many investigators such as Cheng [4] and Naka- 
yama and Koyama [5] attacked the problems of the 
Darcy mixed convection using the local Peclet number 

to form a similarity variable. In their analyses, 
however, the asymptotic solutions for the buoyancy 
dominated flows were not possible, since the Peclet 

number vanishes under such a condition. The present 
unified treatment, as can be seen from equation (16a), 
never suffers from such singularities. 

In this mixed convection regime, equations (1 I), 
(26) and (19) reduce to 

u* = u, + Kg,/JAT,iv (52) 

lo*- 
Glass bead diameter 

0 3mm 
. 4 mm Experiment, Fond et a(. C 16 I 

Present formula, eauatian (51) 
/w=2.6 WgaAT, D/a’)‘” 

Darcy’s law 

NU = 0.565 (KgaA7; D/a Y 1”’ 

I I I 
IO 102 10s 

Kg$AT. D/a2 

FIG. 3. Nusselt number on a horizontal circular cylinder. 
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s ‘I 

Re* q $ Gr* 0 dv 
Cl 

.f= Re* + Gr* (53) 

s x 

nl=dlnATW 0 
AT&r* ‘( 1 + Gr*/Re*) dx 

d In x ATiu,r**(l +Gr*/Re*)x 

Al 
- 

1+2i, 

s 1: 

dInAT, o 
AT;g,r*2(1 + Re*/Gr*) dx 

d In x AT&r* ‘( 1-t Re*/Gr*)x 

A2 
=p (54) _ 

1+3Il,’ 

Thus, similarity solutions are allowed only when 

Gr*/Re*( = RaJPe,) cc ATWgx/ue = const. (55) 

and 

AT, cc lj;l (56a) 

or equivalently 

AT, oc &. (56b) 

Subsequently, we have 

Nu, = (-O’(O)/Z”‘)(Pe,+Ra,)‘~* (57) 

where 

dIntI 
l/Z= (1+21.,)d = (1+3d$$$ (58) 

The previous study on this flow regime [5] reveals 
that only a limited number of similarity solutions are 

possible because of the very much restrictive require- 
ments (55) and (56). Similarity solutions are found 
for an isothermal cylinder or sphere, and a vertical 
wedge or cone with its surface temperature varying 
with the same power index as that of the boundary 
layer edge velocity. 

In general, - Q’(0) must be determined numerically 
from equation (22) with equations (53) and (54) sub- 
stituted for. (Note, all right-hand side terms in equa- 
tion (22) vanish for similarity solutions.) For the iso- 
thermal wall, however, the following approximate 
formula, which closely follows the numerical inte- 
gration results, may be adequate : 

-O’(O) = $ 1+0.62Gr*/Re* ‘:* 

1 + Gr*/Re* > 
(59) 

Hence 

(isothermal wall) (60) FIG. 4. Heat transfer results on Darcy mixed convection. 

where d In 5 ,/d In x = d In 5 */d In x since relation 

(55), gr cc u, under the isothermal wall, must hold. 
The foregoing Nu, expression asymptotically reduces 
to equation (35) for RaJPe, -+ 0 and equation (43) 
for Ra,/Pe, + co. As observed in Fig. 4, expression 
(60) closely approximates the exact solution 151. 

Darcy-Forchheimer free convection regime (Regime 
V: Gr* ... 1 and Re* << 1) 

Plumb and Huenefeld [8] were the first to find a 
similarity solution for an isothermal flat plate in this 
non-Darcy flow regime. Another class of similarity 

solutions was found by Nakayama et al. [9] for curved 
surfaces where the wall temperature decreases in the 
streamwise direction. However, the isothermal flat 

plate solution appears to be the only similarity solu- 
tion of physical interest. 

Let us generate the similarity solutions from the 

general equations (1 l), (26) and (19) as 

u, = 2&m[(l+4Gr*)’ ‘-11 (61) 

‘I 
(1+4Gr* O)“‘d;r?-q 

f= Jo 
(1+4Gr*)‘:‘-1 (62) 

and 

?lI= 
d In x AT%r**[(l+4Gr*) I” - 11x 

*4 

=f=T (63) 

For the product nl to be constant, we must satisfy 

Gr* cc g,AT, = const. (64) 

1.6 r 
Isothermal wall 

36 

- Present formula, equation (60) 

,/ --- Ex;_‘ution 151, 

0.1 I IO 

R+/Ft+= Gr*/Re’ 
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AT, cc tn4, (65) 

where 

& = 
s 

\- r*2 dx. (66) 
0 

Thus, we have obtained the same similarity require- 
ments as already found in the previous study [9]. 
The local Nusselt number for this non-Darcy free 

convection regime is given by 

“’ 

(67) 

Especially for the isothermal case, we propose the 
following approximate formula : 

x Ru, (’ +4Gr*) “-1 
2Gr* 

“I (isothermal wall) (68) 

where -O’(O) has been approximated by modifying 
the BejanPoulikakos formula [7] based on Oseen’s 

linearized solution, such that it closely follows the 
asymptotic expressions, namely, equation (43) for 
Gr* << 1 and equation (51) for Gr* >> 1. (Note 
d In 5,/d In x = d In 5,/d In x = d In 5,/d In x, since 

the relation gV rc l/ATW = const. must hold for this 
isothermal case.) The proposed formula for the iso- 

thermal wall is shown along with the exact values 
[7] in Fig. 5, where excellent agreement between the 
formula and exact values can be seen. 

Forchheimer mixed convection regime (Regime VI: 
Gr* - Re*’ >> 1) 

Only a limited number of non-Darcy mixed con- 
vection problems have been treated so far. Recently, 

Kumari and Nath [13] attacked the mixed convection 
over an isothermal vertical cylinder in a porous 
medium, retaining both the Darcy and Forchheimer 
terms. The heat transfer results were obtained for the 

10 

F - Present formula, equation (681 
oa 

l Exact wlues, Bejan-Pcalikakos t71 

011 
D-2 10-I IO 102 

Gr* 

Fw. 5. Heat transfer results on Darcy-Forchheimer free 
convection. 

specific case of Re* = 1, with Gr* varying from 0.1 to 
100. Let us investigate this unexplored flow regime. 

The general expressions (11), (26) and (19), in this 
flow regime, reduce to 

u, = (u~+K’~~~,~AT,/C)~~~ (69) 

(70) 

and 

s Y 

dlnAT, o 
AT~‘*g~!‘r*‘(l+ Re*‘/Gr) dx 

d1n.u AT~‘g~!*r**(l +Re*‘/Gr*)x 

Thus, similarity solutions are possible only when 

Gr*/Re*=( = Ra:/Pe,‘) cc AT,g,/u: = const. (72) 

and 

AT, cc <:I (73a) 

or equivalently 

AT, cc &I. (73b) 

Correspondingly, we have 

Nu, = (-B’(0)/Z”2)(Pe~+Ra_~)“4 (74) 

where 

dIntI 
1/r= (1+21,)x = (l+:n;)d$. (75) 

Let us consider possible situations where require- 

ments (72) and (73) are satisfied. The potential flow 
theory tells that the free stream velocity over a wedge 
or a cone varies according to u, SC .Y, where the 
exponent m is some function of the wedge angle or 
the cone apex angle. Since gX is constant for a vertical 

wedge or a cone, pointing downward, we must have 
AT, K x2”’ (i.e. n = 2m) for requirement (72) to be 
satisfied. The other requirement (73) may be used to 
find the value of either 1, or i3. Thus, for these similar 
flow cases, the product nl needed for the solution of 
equation (22) becomes a function of m as 

2m 
nI=--- 

1+5m 
for a vertical wedge 

and 

nr = & for a vertical cone. (76b) 
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FIG. 6. Heat transfer results on Forchheimer mixed 

convection. 

In a similar fashion, we can show that the flow around 
the front stagnation point of a horizontal circular 
cylinder or a sphere with its wall temperature varying 
according to AT, a sin (x/R) (where R is the radius) 
admits similarity solutions. The product nZ for these 
stagnation regions should be set to 

nZ = I /4 for a horizontal circular cylinder (77a) 

PZ = l/6 for a sphere. (77b) 

Equation (22) with equation (70) and nZ given by 
(76) or (77) can easily be solved numerically to find 
-Q’(O). However, for the isothermal case (i.e. nZ = 0), 
we propose the following approximate formula which 
can conveniently be used for heat transfer estimation 
with a sufficient accuracy : 

-O’(O) = $ 1 +0.59Gr*/Re*2 ‘I4 

1-t Gr*/Re* 2 > 
. (78) 

Hence 

(Pei +0.59Ra.F) ‘I4 

(isothermal wall) (79) 

where d In < ,/d In x = d In 5 ,/d In x since relation 
(72), namely, u, a gJj2 under the isothermal wall, 
must hold. The above formula naturally generates 
the asymptotic expression for the forced convection 
regime (i.e. equation (35)) as Ra:/Pe: -+ 0, and that 
for the Forchheimer free convection regime (i.e. equa- 
tion (51)) as Ra,*/Pez --t co. 

The vertical cylinder results obtained for a fixed 
Re* value (i.e. Re* = 1) by Kumari and Nath [13] 
belong to the ordinate axis of the flow regime map 
shown in Fig. 2. (Their analysis on a vertical cylinder 
includes the radial curvature effects. However, for 
large Pe, such effects may well be neglected, and the 
solution reduces to the one for the vertical flat plate.) 
As we increase Gr* along the ordinate axis, we go 
from the forced convection regime (Regime I) to the 
Forchheimer free convection regime (Regime III). 
The curve Nu,/Pe.~‘2 for Re* = 1 was generated using 
the foregoing approximate equation (79), and plotted 
in Fig. 6 with the finite calculation results of Kumati 
and Nath. The figure suggests that our expression (79) 
is quite accurate even for the case of Gr* N 1 originally 
excluded from this flow regime. 

CONCLUDING REMARKS 

In this article, we showed that the slip velocity at 
the wall resulting from the externally forced flow and 
the buoyancy force, virtually governs the heat transfer 
rate at the wall. Upon introducing a modified Peclet 
number based on the slip velocity, we transformed the 
governing equations, once for all possible cases of 
free, forced and mixed convection in Darcy and non- 

NuX = 
~16Gr*2-C~l+4Gr”~v2-l121v2 

CMX 
(I + 4GPv - I l/k? 

1 equation (68) 
\ 6GP 2Gr’ 

equation 

/ Ah = x f (fix + 0.62 Ra, 1”’ equation (601 

(79) 

FIG. 7. Proposed heat transfer formulas for an isothermal flat plate. 
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Darcy porous media. This unified treatment for trans- 
formations reveals that convective flows can be classi- 
fied into three flow regimes, namely, the forced convec- 
tion regime, the Darcy free convection regime and the 
Forchheimer free convection regime, depending on the 
magnitudes of the micro-scale Reynolds and Grashof 

numbers based on the square root of the permeability. 
Upon considering physical limiting conditions, all 
possible similarity solutions for these three regimes 
have been extracted from the transformed governing 

equations, and a flow regime map based on the micro- 
Reynolds and Grashof number has been constructed. 

Furthermore, another three intermediate flow 

regimes (bridging the aforementioned three regimes), 
namely, the Darcy mixed convection regime, the 
Darcy-Forchheimer free convection regime and the 
Forchheimer mixed convection regime have been 
investigated to establish the Nusselt number 
expressions which naturally reduce to the cor- 
responding asymptotic expressions under appropriate 
physical limiting conditions. Especially, for the case 
of isothermal vertical flat plates (i.e. i,, = 0 and d In [,/ 
d In x = 1 for i = 1, 2, 3 and 4), the three Nusselt 

number expressions derived for these intermediate 
regimes overlap onto one another, as illustrated in 
Fig. 7. These three expressions which guarantee 

sufficient accuracy may be quite useful for practical 
estimations of heat transfer rates. Perhaps, one should 
consult with the flow regime map and corresponding 
asymptotic expressions provided in this study, before 
sitting in front of a computer terminal to carry out 
numerical integrations for a number of sets of the flow 
parameters, since the flow regime map and asymptotic 
expressions may save a significant amount of com- 
puter time which would otherwise be necessary to 
perform such a parametric study. 
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UNE TRANSFORMATION AFFINE UNIFIEE POUR LA CONVECTION NATURELLE 
OU FORCEE OU MIXTE DANS DES MILIEUX POREUX DARCYENS OU NON 

RBsum@n propose une transformation affine unifite pour extraire toutes les solutions affines possibles 
de la convection naturelle, ou for&e ou mixte dans des milieux poreux darcyens ou non. La vitesse de 
glissement B la paroi rCsultant de I’tcoulement forci: externe et de la force de flottement est choisie comme 
tchelle de vitesse pour former un nombre de Peclet modifiC qui le transforme naturellement en nombre de 
Peclet conventionnel et en nombre de Rayleigh dans certaines conditions physiques particuli2res. Ce 
traitement unifik r&vile trois rtgimes d’icoulement limitants: le rkgime de convection for&e, celui de 
convection naturelle selon Darcy et celui de convection naturelle selon Forchheimer, ainsi que trois autres 
rCgimes intermtdiaires qui sont celui de convection mixte selon Darcy, celui de DarcyyForchheimer en 
convection naturelle et celui de convection mixte selon Forchheimer. Pour distinguer ces regimes on a 
trouvt des paramktres significatifs qui sont les nombres de “micro-khelle” de Reynolds et de Grashof. 
basis sur la racine car&e de la permkabilitt. Une carte de rkgime d’kcoulement est construite pour montrer 
ces six rtgimes diffkrents en portant en abscisse et en ordonnbes les deux nombres adimensionnels de micro- 
Bchelle. Des expressions asymptotiques don&es sont trts utiles pour l’estimation pratique du transfert 

thermique convectif dans les milieux poreux. 
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EINE VEREINHEITLICHTE I~HNLICHKEITSTRANSFORMATION FUR FREIE, 
ERZWUNGENE UND MISCH-KONVEKTION IN PORGSEN MEDIEN INNERHALB UND 

AUSSERHALB DES DARCY’SCHEN BEREICHES 

Zus~me~~n~Es wird eine vereinheitli~hte ~hnlichkeitstransformation vorge~hlagen, urn alle 
miiglichen Ahnlichkeitsl6sungen fiir freie, erzwungene und Misch-Konvektion in porosen Medien inner- 
halb und auBerhalb des Darcy’schen Bereiches zu ermitteln. Die Gleitgeschwindigkeit an der Wand 
aufgrund der augeren erzwungenen Striimung und aufgrund von Auftriebskdften wird als Gesch- 
windigkeitsma~stab herangezogen. Damit wird eine modifizierte Peclet-Zahl gebildet, die unter bestimmten 
phys~kalischen Grenzb~ingungen naturgem~~ in die konventionelle P&et- und Rayleigh-Zah~ ilbergeht. 
Dieses vereinheitlichte Verfahren la& als Extremf%Ile drei Stromungsbereiche erkennen : den Bereich 
erzwungener Konvektion, den Bereich der freien Konvektion nach Darcy und den Bereich der freien 
Konvektion nach Forchheimer. Dazwischen liegen drei weitere Bereiche : die Misch-Konvektion nach 
Darcy, die freie Konvektion (Darcy-Forchheimer) und die Misch-Konvektion nach Forchheimer. Die zur 
Unterscheidung dieser Str~mungsgebiete relevanten Str~mungsparameter sind die Reynolds- und die 
Grashof-Zahl fiir die Vorginge im kleinen (beide beruhen auf der Quadratwurzel aus der PermeabihtPt). 
Diese beiden Kennzahlen werden auf der Abszisse bzw. auf der Ordinate aufgetragen, wodurch sich 
eine Stromungsbereichskarte ergibt, die die genannten sechs Striimungsgebiete zeigt. Die asymptotischen 
Ausdriicke, welche fur diese Strijmungsgebiete entwickelt worden sind, erscheinen fur praktische Berech- 
nungen des konvektiven W~~etransports in poriisen Medien innerhalb und auBerhaIb des Darcy’schen 

Bereiches niitzlich. 

OBO~qEHHOE ffPEOBPA~B~~E l-IO~OLiH2 An3 CBOSO~HO#$ BbIH~~EHHO~ H 
CMElIIAHHOft KOHBEKIJMM B KJIACCWIECKEIX ki HEKJIACCWIECKHX I’IOPkICl’bIX 

CPE&tX 

Ammams-HpemoxeBo o6o6memme 11peo6pa3o~m~e IIOJIO~H~, noasomzomee nonyslrra ace BOG- 
Mombxe pemefm ma cBo~~o~,B~e~o~ H cbfeuIamoE 110~wwi~ B pa3miwux nopambix 

cpemx. CKopOCTb CLOnbYeHHn y CTeHKA, o6ycnoeneman Bbnsyxnemibnd TeSeHHeM 38 cPeT BHemiHx 

CHJI B nome~~bmui cmaMH, ssltipatia B Kamm%e Xapax-repHoti cxopocm ma o6pa3onamn MOLUI+~UH- 
poaaaeoro wicna Ilexne,roTopoe qm HexmopbIx ~~Hs~wimix npe~enb~btx ycnoeu~x ecrecTnemibm4 
06pa3ohf nepexom B o6bumowme wcna nenne a P3nen.onrtcareaeMas o6o6wemax MeToma 

R03BOJUIeT pa3mmbTpH UpeneJlbHbrx pemihsa ~qe~~,a~Me~o,~~ B~~e~o~ KOiiBeKi@iM, 
CB060mOKOHBeKTHBIIOe Tesemie AapcA, CBO~~LIHOKOHB~KTHBHO~ Te¶emie @opmatiepa, a Taroice TH 
npoh3eq-rombm pexcma, a memo, cMemma~ KOHB~KP )JapcH, ceo6owan ~ome~l~~n &qmi- 

@opwxaiiMepa H pemird cMerU;uUrOti KOHESWSI @opmXafihtepa. Hatietzo, STO onpenenmo~ napa- 
MerpaMH Te'IeHH5I, pK3JIHWZOiUKMH JWiHbie peXWMbl, 1IBJIalioTC4 “mKpoMacxma6Hare" 4HCn.9 

%k&iOAbllGXH t-&XiCN&3 Ha~HO~KE~paTHOrO KOpHS ~~~U~~aeM~.~K~~H 

~~H~a3aHH~pe~MOBTe~e~~a~eHaKapTa~Hc~o~b3oBaHHeMMHnpoMac~a6~bur6e3pa3- 

Mepmrx q~cen B Kawmne nepebfembm a6cmccbI H opm;isaTu. rIonynemme mn nammx pe$KHMOB 

Te'IeIiliK aCHM~OTHWCMe BbQarCeEUiK MOI-yT IIpHMeHKTbCX AIIK IIpaKTHWCKOii OQeHKH KOHBeKTHBWOrO 


